tion for the receptor resistance to attack by organophosphorus drugs would lie in the unavailability of a free serine hydroxyl for phosphorylation. Some intriguing features of this hypothesis may be summarized as follows. The receptor would have its biochemical origin in the pool of AChE, a portion of which would be trapped in the membrane network and maintained in the acetylated form through a steady-state quantal discharge of ACh from the synaptic cleft. This would constitute a self-generating system, a phenomenon not uncommon in biochemistry (as is the case for instance for some of the catalytic intermediates of the tricarboxylic acid cycle). Assuming that some drugs could cause release of additional quantities of ACh³²

(32) G. B. Koelle, J. Pharm. Pharmacol., 14, 65 (1962).

in addition to interacting directly with the receptors, more acetylated AChE could be made available with the result that steeper dose-response curves than expected would be observed as is often the case. Finally, the physico-chemical events following receptor stimulation might allow hydrolytic splitting of the acetyl group, thus accounting for desensitization. Reacetylation would be essential for sensitivity to reappear. It would be of considerable interest to attempt labeling of these receptors with radioactive acetyl groups and then study their turnover rate in the presence of various drugs.

It should be emphasized that the characteristics of the preceding speculation do not affect in any way the arguments forming the basis of the MPT.

1-Aralkyl-4,4-dialkylpiperidines as Hypotensive Agents

T. C. Somers and G. J. Handley¹

Nicholas Institute for Medical and Veterinary Research, Sherbrooke, Victoria, Australia

Received June 1, 1964

A large number of 1,4,4-trisubstituted piperidines have been synthesized by lithium aluminum hydride reduction of the corresponding glutarimides. Many of the piperidines are highly active as hypotensives when administered intraperitoneally to intact conscious rabbits. The most active compounds were 1-(3,4-diethoxyphenethyl)-4-methyl-4-n-hexylpiperidine hydrochloride and <math>1-(p-methoxyphenethyl)-4-spirocyclohexanepiperidine hydrochloride. Structure-activity relationships are discussed.

In recent years variations on the piperidine structure have been the subject of many investigations in addition to the earlier work which led to the introduction of 4-carboethoxy-1-methyl-4-phenylpiperidine (pethidine) as an analgesic. Other such compounds having potent analgesic activity have since been reported, *e.g.*, I^2 and $II.^3$ Hypotensive activity has also been demonstrated in this class, 1,2,2,6,6-pentamethylpiperidine (Pempidine) being the most prominent example. Other piperidines having hypotensive activ-

ity are III⁴ and related compounds, while IV⁵ has

- (2) J. Weijlard, P. Orahovats, A. Sullivan, G. Purdue, F. Heath, and K. Pfister, J. Am. Chem. Soc., 78, 2342 (1956).
- (3) S. M. McElvain and D. H. Clemens, ibid., 80, 3915 (1958).
- (4) U. S. Patent 2,891,066 (1959); J. Owen and T. Verhave, J. Pharmacol. Exptl. Therap., 122, 59 (1958).
- (5) Eli Lilly and Co., Australian Patent 225,975 (1959).

been reported to have neurosedative as well as hypotensive and antiemetic actions.

It appeared that, with the exception of the penpidine category, a phenyl substituent at the 4-position was necessary for useful pharmacological activity. We had been engaged in a study of $\beta_i\beta_j$ -dialkylglutarimides⁶ from which piperidines are easily obtained by lithium aluminum hydride reduction. The availability of a large number of glutaric acids, therefore, prompted our investigation of the effects of 4,4-dialkyl substitution in the piperidine ring with a variety of substituents on the nitrogen. Among the first compounds synthesized was 1-phenethyl-4-spirocyclohexanepiperidine (V). This was found to have negligible analgesic

activity, but further screening showed interesting hypotensive action. Increased hypotensive activity resulted on introduction of a 1-methyl substituent into the side chain and encouraged further investigation of such compounds.

This publication deals principally with the preparation and evaluation as hypotensives of piperidines

(6) G. J. Handley, E. R. Nelson, and T. C. Somers, Australian J. Chem., 13, 129 (1960).

⁽¹⁾ To whom all inquiries should be addressed.

TABLE I β -Substituted Glutarimides

$\overset{R_1}{\underset{R_2}{\overset{CO}{\underset{CO}{\overset{N-R_3}{\overset{}}}}}}$

		B.p. (mm.)								
		or		(Caled., %		Found, %			
\mathbf{R}_2	Ra	m.p., °C.	n^{20} D	Formula	С	н	Ν	С	н	Ν
$i-C_3H_7$	CH3	98-100 (2.0), 36-39		$C_{9}H_{1\delta}NO_{2}$	63.9	8.9	8.3	64,1	8.8	8.5
$n-C_{\delta}H_{11}$	CH2CH=CH2	166 (4.0)	1.4790	$C_{14}H_{23}NO_2$	70.9	9.8	5.9	71, 2	9.7	6,0
n-C6H13	(CH ₂) ₃ OCH ₃	190-193 (4.5)	1.4718	$C_{16}H_{29}NO_2$	67.8	10.3	4.9	67.9	10.1	5.3
$n - C_6 H_{13}$	$n-C_8H_1$;	206 (3.0)	1.4690	$C_{20}H_{87}NO_2$	74.3	11.5	4.3	74.0	11.6	4.7
.)6	C_2H_δ	142-145 (3.0), 33-36		$C_{12}H_{19}NO_2$	68.9	9.2	6.7	69.0	9.0	6,9
.) 6	$n-C_3H_7$	138-140 (2.0)	1.4961	$\mathrm{C}_{13}\mathrm{H}_{21}\mathrm{NO}_2$	69.9	9.5	6.3	69.3	9.3	6.1
)5	$i-C_8H_7$	79-80		$C_{13}H_{21}NO_2$	69.9	9.5	6.3	70.2	9.4	6,4
)5	CH ₂ CH=CH ₂	134-138 (2.0)	1.5092	$C_{13}H_{19}NO_2$	70.6	8.7	6.3	70.2	8.5	6.3
)5	i-C4H9	147-150 (1.0)	1.4930	$C_{14}H_{23}NO_2$	70.9	9.8	5.9	70.6	9.7	5.8
.)6	$i-C_{\delta}H_{11}$	146-148 (0.7)	1.4915	$C_{16}H_{2\delta}NO_2$	71.7	10.0	5.6	71.6	10.0	5.6
)5	n-C6H13	165-168 (1.5)	1.4896	$C_{16}H_{27}NO_2$	72.4	10.3	5.3	71.7	10.2	5.4
.)6	C_6H_5	169-170		$C_{16}H_{19}NO_2$	74.7	7.4	5.4	74.9	7.5	5.7
n-C4H9	н	72		$C_{11}H_{19}NO_2$	67.0	9.7	7.1	67.3	9.7	7.4
$\mathrm{CH}_{2}\mathrm{CH}(\mathrm{CH}_{8})\mathrm{C}_{2}\mathrm{H}_{5}$	н	63		$\mathrm{C}_{12}\mathrm{H}_{21}\mathrm{NO}_2$	68.2	10.0	6.6	68.1	10.0	6.9
	$\begin{array}{c} R_{2} \\ i - C_{3}H_{7} \\ n - C_{6}H_{11} \\ n - C_{6}H_{13} \\ n - C_{6}H_{13} \\ n - C_{6}H_{13} \\)_{6} \\)_{5} \\)_{5} \\)_{5} \\)_{5} \\)_{5} \\)_{5} \\)_{5} \\)_{6} \\ n - C_{4}H_{9} \\ CH_{2}CH_{1}CH_{6}C_{2}H_{5} \end{array}$	R2 R3 $i-C_3H_7$ CH3 $n-C_5H_{11}$ CH2CH=CH2 $n-C_6H_{13}$ (CH2)3OCH3 $n-C_6H_{13}$ $n-C_8H_{11}$ $n-C_6H_{13}$ $n-C_8H_1$ $n-C_6H_{13}$ $n-C_8H_7$ b_6 c_1H_2 b_6 $c_1C_8H_7$ b_8 $i-C_8H_7$ b_8 $i-C_8H_1$ b_1b_6 $n-C_8H_{11}$ b_1b_6 $n-C_8H_{11}$ b_1b_6 $n-C_8H_{13}$ $n-C_8H_9$ H $n-C_4H_9$ H $cH_2CH(CH_8)C_2H_8$ H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE II β -Substituted Glutarimides

B.p. (mm.)

					or				alcd., %	,	Found, %		
\mathbf{R}_1	\mathbf{R}_{2}	\mathbf{R}_{3}	n	R_4	R_{δ}	ш.р., °С.	Formula	С	H	Ν	С	н	N
н	i-C3H7	н	1	н	н	80-81	$C_{16}H_{21}NO_2$	74.1	8.2	5.4	74.4	8.2	5.7
CH3	C_2H_δ	н	1	н	н	180 (1,0), 38-40	$C_{16}H_{21}NO_2$	74.1	8.2	5.4	73.6	8.1	5.3
CH3	$n-C_{3}H_{7}$	н	1	н	н	50-51	C17H23NO2	74.7	8.5	5.1	75.0	8.5	5.4
CH3	n-C ₃ H ₇	CH3	1	н	н	136-140 (1.0), 35-37	$\mathrm{C}_{18}\mathrm{H}_{26}\mathrm{NO}_{2}$	75.2	8.8	4.9	75.3	8.8	5.0
CH3	$i-C_{3}H_{7}$	н	1	н	н	74-75	C17H23NO2	74.7	8.5	5.1	74.8	8.2	5.4
CH_8	n-C4H2	н	1	н	н	185–188 (1.0), 43–4ŏ	$C_{18}H_{25}NO_2$	75.2	8.8	4.9	75.2	8.7	4.9
CH3	n-C4H9	CH_3	1	н	H	172 (0.8)	$C_{19}H_{27}NO_2$	75.7	9.0	4.7	75.8	9.2	4.8
CH3	$n-C_4H_9$	н	1	н	OCH:	212 (2.0), 47-49	$C_{19}H_{2}$; NO ₃	71.9	8.6	4.4	72.2	8.6	4.9
CH3	n-C4H9	н	1	OCH3	OCH ₈	53-55	$C_{20}H_{29}NO_{4}$	69.1	8.4	4.0	69.0	8.3	4.1
CH_3	$n-C_4H_9$	н	1	OCH ₈	OC₂H s	68-69	$C_{21}H_{31}NO_4$	69.8	8.6	3.9	69.9	8.7	4.0
CH3	$n-C_4H_3$	H	1	$\mathrm{OC}_2\mathrm{H}_{\pmb{b}}$	OC_2H_6	180-185 (1), 46-49	$C_{22}H_{33}NO_4$	70.4	8.9	3.7	70.0	9.0	4.1
CH8	<i>n</i> -C ₄ H ₉	н	3	Н	н	199-201 (3), 33-36	$\mathrm{C}_{20}\mathrm{H}_{29}\mathrm{NO}_{2}$	76.2	9,3	4,4	76.7	9.4	4.6
CH₃	$n-C_{\delta}H_{11}$	н	1	н	н	208-212 (3.5), 36-39	$C_{19}H_{27}NO_2$	75.7	9.0	4.7	75,8	8.9	4.7
CH_8	$n - C_{\delta}H_{11}$	н	1	OCH3	OCH3	63-64	$\mathrm{C}_{21}\mathrm{H}_{31}\mathrm{NO}_4$	69.8	8.6	3.9	70,2	8.8	4.1
CH_3	$n-C_{\delta}H_{11}$	CH_3	1	н	н	190 (2.0)	$C_{20}H_{29}NO_2$	76.2	9.3	4.4	75.8	9.2	5.0
C₂H₅	$CH_2CH(CH_3)C_2H_5$	н	1	н	н	217 (2.5)	$C_{20}H_{29}NO_2$	76.2	9.3	4.4	76.5	9.3	4.9
CH_3	$n-C_6H_{13}$	H	1	н	н	44-47	$\mathrm{C}_{20}\mathrm{H}_{29}\mathrm{NO}_2$	76.2	9.3	4.4	76.1	9.3	4.4
CH_3	$n-C_6H_{13}$	н	1	н	OCH8	63	$C_{21}H_{31}NO_3$	73.0	9.1	4.1	73.2	9.1	4.0
CH_3	$n - C_6 H_{13}$	н	1	OCH ₈	OCH3	63-64	$\mathrm{C}_{22}\mathrm{H}_{33}\mathrm{NO}_{4}$	70.4	8.9	3.7	70.7	8.8	4.0
CH3	$n-C_6H_{13}$	H	. 1	00	CH2O	71	$C_{21}H_{29}NO_4$	70.2	8.1	3.9	70.0	8.0	3.9
CH_3	$n \cdot C_6 H_{13}$	CH3	1	н	н	211 (4.5)	$\mathrm{C}_{21}\mathrm{H}_{31}\mathrm{NO}_2$	76.6	9.5	4.3	76.4	9.4	4.8
CH_2	$i-C_6H_{13}$	H	1	н	н	64 - 65	$C_{20}H_{29}NO_2$	76.2	9.3	4.4	76.4	9.5	4.5
CH_3	i-C ₆ H ₁₈	CH:	1	н	н	204-206 (3.0)	$C_{2l}H_{31}NO_2$	76.6	9.5	4.3	76.1	9.2	4.9
CH_8	n-C ₈ H ₁₃	Н	3	н	н	238-240 (6.0), 34-35	$C_{22}H_{33}NO_2$	76.9	9.7	4.1	76.6	9.8	4.3
CH_8	n-C ₇ H ₁₅	н	1	н	H	210-214 (1.5)	$\mathrm{C}_{21}\mathrm{H}_{31}\mathrm{NO}_{2}$	76.6	9.5	4.3	76.4	9.4	4.5
CH_8	n-C ₇ H ₁₅	CH8	1	н	H	200-202 (1.5)	$C_{22}H_{33}NO_2$	76.9	9.7	4,1	76.6	9.6	4.3
CH3	n -C $_9$ H $_{19}$	н	1	н	н	228(4.0)	$C_{23}H_{35}NO_2$	77.3	9.9	3.9	77.2	9.9	4.1
C_2H_5	$CH_{2}CH(CH_{3})C_{2}H_{5}$	CH_3	1	н	н	191 - 194(2.0)	$C_{21}H_{81}NO_2$	76.6	9.5	4.3	75.7	9.5	4.3
(CI	H2)4	н	1	н	н	66	$\mathrm{C}_{17}\mathrm{H}_{21}\mathrm{NO}_{2}$	75.2	7.8	5.2	75.5	8.1	5.3
(CI	H2)4	н	1	OCH_3	OCH3	64-66	$C_{19}H_{25}NO_4$	68.9	7.6	4.2	68.5	7.4	4.4
(CI	H ₂) ₄	CH8	1	н	Н	182-184 (2), 39-42	$C_{18}H_{23}NO_2$	75.8	8.1	4.9	75.9	8.0	5.3
(CI	H2)5	н	0	н	H	71-73	$C_{17}H_{21}NO_2$	75.4	7.8	5.2	75.1	7.9	5.4
(CI	H2)5	н	1	н	\mathbf{H}	80	$C_{18}H_{23}NO_{2}$	75.8	8.1	4.9	76.3	8.2	4.8
(CI)	H2)6	н	1	н	OCH_3	62 - 64	$C_{19}H_{25}NO_8$	73.4	7.7	4.3	73.8	8.2	4.1
(CI	H2)5	н	1	OCH3	OCH3	102-104	$C_{20}H_{27}NO_{4}$	69.5	7.9	4.1	69.3	7.9	4.2
(CI	12)6	Н	1	OCH8	OC₂H₅	91-93	$C_{21}H_{29}NO_4$	70.2	8.1	3.9	70. 3	8 , 2	4.1
(CI	12)5	H	1	00	CH₂O	89-91	$C_{19}H_{23}NO_4$	70.4	6.8	4.1	69.7	6,9	4.4
(CI	12)5	CH:	1	H	н	65-68	$C_{19}H_{25}NO_2$	76.4	8.4	4.7	76.4	8.5	5.1
(CI	12)8	H	3	Н	H	90-91	$C_{20}H_{27}NO_{2}$	76.6	8.7	4.5	77.2	8.7	4.5
(Cł	12)6	н	1	н	H	72-75	$C_{19}H_{25}NO_2$	76.4	8.4	4.7	76.4	8.4	4.7

TABLE III

SUBSTITUTED PIPERIDINE SALTS

----Ra -HCl

				C	alcd.,	76	F	flypos tensive				
\mathbb{R}_1	R_2	R ₃	M.p., °C.	free base	Formula	C	11	Ν	\mathbf{C}	н	Ν	activity ^a
11	i-CaH7	CHI3	152^{b}		$C_{15}H_{27}NO_7^b$	54.0	8.2	4.2	33.7	8.4	4.6	0
CH_3	CH3	CH ₃	227^{c}		$C_{14}H_{20}N_4O_7{}^d$	47.2	5.7	15.8	47.7	5.5	15.6	
CH_3	$n-C_{3}H_{7}$	11	$230-234^{\circ}$		$C_9H_{20}ClN$	60.8	11.3	7.9	60,6	11.2	7.5	
CH_3	i-Call7	11	277-282 dec. ^o		C ₉ H ₂₀ ClN	60.8	11.3	7.9	60. 8	11.4	7.2	
CH_3	$n-C_{\delta}H_{11}$	н	220 ^c		$C_{11}H_{24}CIN$	64.2	11.8	6.8	64.5	11.9	6.7	0
CH_8	$n - C_{\delta}H_{11}$	$CH_2CH==C11_2$	185-186	1.4640	$C_{14}H_{28}ClN$	68.4	11.5	5.7	68.3	11.4	5.7	0
CHs	$n - C_6 H_{13}$	н	221-222°		$C_{12}H_{26}ClN$	65.6	11.0	6.4	66.0	11.6	6.4	0
CH	n-C6H ₁₃	(CH ₂) ₃ OCH ₃	241 dec.	1.4626	C ₁₆ H ₃₄ ClNO	65.8	11.7	4.8	66.2	11.8	4.5	
CH3	$n-C_6H_{13}$	$n-C_8H_1$	268-27 0	1.4653	C20H42C1N	72.4	12.8	4.2	72.6	12.8	4.3	
CH3	$n-C_6H_{13}$	$CH_2C(C_2H_5)H(CH_2)_3CH_3$	197 - 200	1.4608	C20H42C1N	72.4	12.8	4.2	72.5	12.5	4.2	a
(($CH_2)_4$	Н	258 - 259	1.4794	C ₉ H ₃₈ C1N	61.5	10.3	8.0	61.3	10.4	7.8	
((CH2)5	11	228 - 229	1.4845	$C_{19}H_{20}C1N$	63.3	10.6	7.4	63.5	10.5	7.2	0
((CH2)6	CH ₃	240 - 241	1.4811	$C_{11}H_{22}ClN$	64.8	10.Ð	6.9	64.4	10.9	6.7	
(($(H_2)_{\delta}$	C_2H_b	250 dec.	1.4838	$C_{12}H_{24}C1N$	66.2	11.1	6.4	36.4	11.0	6.2	
((CH ₂)6	n-C3H;	266-267 dec.	1.4835	$C_{13}H_{26}ClN$	67.4	11.3	fi.0	67.6	11.3	6.0	+
((CH2)6	i-C3H7	285 dec.	1.4840	$C_{13}H_{26}ClN$	67.4	11.3	6.0	67.9	11.3	6.0	++
((CH₂)δ	CH ₂ CH=CH ₂	220-221	L.4934	$C_{13}H_{24}ClN$	67.9	10.5	6.1	67.9	10.5	6.0	0
((C1I2)6	i-C4H9	29 0 dec.	1.4768	C11H28CIN	68.4	11.5	5.7	68.1	11.2	5.6	0
(((H2)6	i-C6H11	320-325 ilec.	1.4815	$C_{16}H_{30}CIN$	69.3	11.6	5.4	69.7	11.7	ā.0	0
((CH₂)6	n-C61113	305-310 dec.	1.4800	$C_{14}H_{32}ClN$	-70.2	11.8	5 .1	70.4	11.8	5.0	· ·
((CH2)6	C6H15	208-212	1.5621	$C_{16}H_{24}ClN$	72.3	9.1	5.3	72.5	8.9	5.0	0

^a In rabbits, i.p. and/or i.v.: $0 = n_0$ noticeable action on blood pressure, + = variable activity with 10-15% fall in blood pressure obtained in about 50% of cases, + + = 10-25% fall in about 75% of cases, + + + = 30-40% fall at higher doses in 75% of cases, + + + = 50-60% fall obtained at higher doses with little variability shown in response and apparent existence of a dose-response curve. ^b Citrate. ^c Hygroscopic. ^d Picrate, m.p. 227°.

having the general structure VI where R_1 and R_2 are alkyl or spirocycloalkane; R_3 is H, CH₃, or C₂H₅; n = 0, 1, 2, or 3; and R_4 and R_5 are H or alkoxy. Compounds having 1-alkyl and 1-phenyl substituents as well as many of the corresponding methiodide salts have also been synthesized.

The $\beta_{,\beta}$ -dialkyl- and β -spirocycloalkaneglutarie acids, from which the required bases were derived, were obtained by acid hydrolysis of the α, α' -dicyano- β -substituted glutarimides.⁷ Where the usual Guareschi reaction between the ketone, ethyl cyanoacetate, and ammonia failed to give the required imide as found with ethyl 2-methylbutyl ketone, the procedure described by McElvain and Clemens³ for otherwise inaccessible alkyl aryl derivatives was employed successfully. This involves condensation of cyanoacetamide with the alkylidene cyanoacetate in the presence of sodium ethoxide.

Generally the glutaric anhydride was used in preference to the acid for condensation with the base, as reaction occurs more smoothly with the former and also conversion of the crude glutaric acid to the anhydride followed by distillation offered an easier method of purification. Reaction with the appropriate amine at 180-200° for several hours then gave the N-substituted glutarimide (Tables I and II), except that where R_3 in Table II is methyl, higher temperatures (to 350°) were necessary to complete the condensation. The method worked equally well for all alkyl and aralkylamines tried, yields of 70-90% being obtained, except in the case of t-butylanine where ring closure of the intermediate N-t-butyl-3-spirocyclohexaneglutaramic acid was apparently prevented by steric factors. Glutarimides having no N-substituent, required as intermediates to the secondary bases, were obtained by fusion of the anhydride with urea.

The piperidine bases were obtained in high yield (70-85%) by reduction in ether with lithium aluminum

(7) A. I. Vogel, J. Chem. Soc., 1758 (1934),

hydride. They were generally characterized as the hydrochloride salts (Tables III and IV). Phenolic derivatives of 1-phenylalkylpiperidines were derived from the corresponding alkoxy compounds, and the acetoxy compounds by acetylation of the phenols. In a few instances where the primary amine was less accessible than the alkyl halide, the required 1-substituted piperidine was prepared by alkylation of the secondary base. Methiodide salts (Tables V and VI) were obtained without difficulty by reaction in ether at room temperature for several days or by refluxing in acetone solution for 2-3 hr.

Pharmacology and Structure-Activity Relations.— After preliminary screening in mice, selected compounds were tested for hypotensive activity by intraperitoneal injection in intact conscious rabbits, measuring blood pressure in the auricular artery by use of the Grant Capsule. The initial dose used was generally the highest dose in mg./kg. which killed 0/5 mice acutely in preliminary screening. The tables give only a rough indication of hypotensive activities obtained, as the symbols refer only to intensity of action and largely ignore degree of toxicity and duration of action. Where relatively high activity appeared after intraperitoneal administration, the compound was tested further for oral activity in rabbits.

Some of the quaternary ammonium compounds had ganglion-blocking activity, but none of the tertiary bases showed this property. The mechanism by which the latter produce hypotensive action is still being studied, but our interest was concentrated on this class which seemed likely to produce a hypotensive drug lacking the undesirable side effects of the ganglionblocking compounds.

TABLE IV
1-Aralkylpiperidine Hydrochlorides

					R_{1}	\frown	Π	\mathbb{R}_{4}								
	R_2 $N_{\rm CH(CH_2)n}$ $R_3 HCl$															
	K_3												e ns ive			
						free	°C.,	· · ·	Cal	icd., %-			Fou n d,	‰—	- activ	ityª
$\mathbf{R_1}$	R_2	R3	n	R_4	R_{6}	base	HCl Salt	Formula	С	н	Ν	С	н	Ν	I.p.	Oral
н	Н	н	1	Н	H	1.5240	$220-226^{b}$							_	0	
H	CH:	CH3	1	H	H	1.5261	207.5	C ₁₅ H ₂₄ ClN	71.0	9.5	5.5	71.1	9.4	5.2	0	
н СН	1-U3H7 CaH	н н	1	H	н н	C 1 5175	270 dec.	C16H26CIN	71.8	9.8	5.2 5.2	71.7	9.7	0.1 5 1	+	
CH ₃	C2118 C2H6	CH ₃	1	н	H	1.5175	266-270	C17H28ClN	72.4	10.0	5.0	72.5	10.0	4.7	+ + + ª	
CH3	n-C3H7	H	1	н	Н	1.5130	312-317 dec.	$C_{17}H_{28}C1N$	72.4	10.0	5.0	72.1	9.9	4.9	0	
CH3	$n-C_3H_7$	СHз	1	н	Н	1.5143	283 dec.	$C_{18}H_{30}ClN$	73.1	10.2	4.7	72.6	10.4	4.7	+ ^d	
CH3	i-C3H7	H	1	H	H	с	353 dec.	C ₁₇ H ₂₈ ClN	72.4	10.0	5.0	72.6	9.9	4.8	++	
CH3	n-C4H9	H U	1	H	H OCH.	1.5100	285 dec,	C18H30CIN	73.1	10.2	4.7	72.8 60.8	9.8	4.9	+	
CH ₂	n-C4119	н	1	DCH	OCH ₃	1.0100 c	265 dec.	C ₂₀ H ₃₄ ClNO ₂	67.5	9.6	4.5 3.9	67.4	9.7	3.7	0	
CH3	n-C ₄ H ₉	н	1	OCH3	OC2H6	1.5176	256 dec.	C ₂₁ H ₃₆ ClNO ₂	68.2	9.8	3.8	67.7	9.7	3.6	+++	+++
CH₃	n-C4Hs	н	1	OC2H5	OC₂H₅	с	257 - 258	$\mathrm{C}_{22}\mathrm{H}_{38}\mathrm{ClNO}_2$	68.8	10.0	3.7	69.1	9.9	3.8	+ + +	++
CH_3	$n-C_4H_9$	CH8	1	н	н	1.5093	275-277 dec.	$C_{19}H_{32}ClN$	73.6	10.4	4.5	73.5	10.4	4.6	0	
CH3	n-C4H9	H	3	H	H		254-257	$C_{20}H_{24}C1N$	74.2	10.6	4.3	74.0	10.5	4.1	0	
CH ₃	n-CoHi	н н	1	H OCH	n OCH	1.5087	280 258260 dec	Cu HaclyOn	13.0	10.4	4.0	74.U 68.1	10.5	4.8	+ 0	
CH	n-CoHu	CH ₃	1	H	H	1.5077	272 dec.	C21H36C1.VO2	74.2	10.6	4.3	74.2	10.7	4.4	++	
CH3	n-C6H18	н	1	н	H	1.5056	283	C ₂₀ H ₃₄ ClN	74.2	10.6	4.3	74.0	10.4	4.4	+++	++
CH₃	$n-C_8H_{13}$	CH₃	1	н	H	1.5017	255	$\mathrm{C}_{21}\mathrm{H}_{36}\mathrm{ClN}$	74.6	10.7	4.1	74.8	10.6	4.1	+++	++
CH3	$n-C_6H_{13}$	C₂H₅	1	Н	н	1.5028	216-219	C22H38ClN	75.1	10.9	4.0	74.9	10.7	3.9	+ + ª	
CH3	$n-C_6H_{13}$	H	1	ос ч	H ₂ O	C	274	$C_{21}H_{34}CINO_2$	68.6 71.2	9.3	3.8	68.7 71 7	9.4	3.7	+	
CH:	$n - C_6 H_{13}$	л Н	1	DCH	OCH:	1.5106	280-287	C21H26CINO C22H26CINO	68.8	10.3	4.0	68 7	9.9	3.8	++	
CH3	n-C6H13	н	1	OH	OH	e	173-174	C20H34C1NO2	67.5	9.6	3.9	67.2	9.3	3.9	0	
CH3	n-C6H13	н	1	OCOCH3	OCOCH:		203	C24H38C1NO4	65.5	8.7	3.2	65.2	8.8	3.2	+++	++
CH₃	n-C ₆ H ₁₃	н	1	OC₂H₅	OC_2H_5	с	250-255 dec.	$C_{24}H_{42}ClNO_2$	70.0	10.3	3.4	69.8	9.9	3.2	+ + + +	0
CH3	$n-C_6H_{13}$	H	2	H	H		237-240	$C_{21}H_{36}ClN$	74.6	10.7	4.1	74.1	10.6	3.9	++	
CH3	n-CoH13	CH₃ u	23	H	H. T	1.5020	209-212	C22H38CIN	75.1	10.9	4.0	75.1	10.8	30.9	+++	++
CH	n-C6H13	н	3	н	OCH.	1.5071	248-250	C221138C114	72.3	10.5	3.7	72.8	10.6	3.6	+++++	++
CH3	i-C6H13	н	1	н	н	1.5043	295 dec.	C ₂₀ H ₃₄ C1N	74.2	10.6	4.3	74.3	10.6	3.9	0	
CH_3	i-C6H13	CH_3	1	н	н	1.5035	264 (lec.	$\mathrm{C}_{21}\mathrm{H}_{36}\mathrm{ClN}$	74.6	10.7	4.1	75.2	11.0	3.8	0	
CH₃	$n-C_7H_{16}$	H	1	н	H	1.5065	285	C ₂₁ H ₂₆ C1N	74.6	10.7	4.1	74.8	11.1	4.0	$+++^{a}$	+
CHs	$n - C_7 H_{16}$	CH3	1	H	H	1,5041	255-258 dec.	C ₂₂ H ₅₈ NCI	75.1 75.5	10.9	4.0	75.3	10.6	3.8 9 0	+++	+
CoHA	CH ₂ C(CH ₂)HC ₂ H ₂	н	1	н	л H	1.5047	233-235 dec.	C 231140C1N	74.2	10.6	4.3	73.8	10.9	0.0 4.2	+	
C₂H₅	CH ₂ C(CH ₃)HC ₂ H ₅	CH3	1	н	н		218	C21H36C1N	74.6	10.7	4.1	74.2	10.4	4.1	++	
(C	$(H_2)_4$	н	1	н	н	1.5268	>310	$C_{17}H_{26}ClN$	73.0	9.4	5.0	73.0	9.4	4.9	++	
(C	(H ₂)	CH3	1	H	H	1.5276	275 dec.	C ₁₈ H ₂₈ ClN	73.6	9.6	4.8	73.7	9.8	4.6	0	
(0	(H ₂)4	H U	1	OCH:	OCH3	C 1 5250	261 dec.	C19H20CINO2	67.1 72.0	8.9	4.1	66.9 79.9	9.0	4.2	++	
(0	(Ho)s	CH ₂	0	н	н	1.0000	281-284 dec.	C18H98ClN	73.6	9.6	4.8	73.5	9.6	4.5	+ d	
(C	CH2)6	C ₂ H ₅	0	н	Н	1.5306	295 dec.	C19H30C1N	74.1	9.8	4.6	74.1	9.7	4.5	0	
(C	CH2)6	н	1	н	н	1.5321	300 dec.	$C_{18}H_{28}ClN$	73.6	9.7	4.8	73.8	9.6	4.4	++	
(C	(H ₂)6	н	1	H	OH	ſ	235-241	C ₁₈ H ₂₈ ClNO	69.8	9.1	4.5	69.4	9.0	4.3	+	
(0	(H ₂)s	H U	1	H U	OCH1	1.5368	295-298 272-276 doo	C19H30CINO	70.5	9.3	4.3	70.0	9.2	4.4	+++	++
	(H2)6	н	1	OCH:	OCUCIL3		265 dec.	C20H20ClNO2	67.9	9.1	4.0	68.0	9.3	3.9	0	
(C	CH ₂) 5	H	ī	OCH3	OC2H5	h	258-260	C21H34ClNO2	68.5	9.3	3.8	68.6	9.2	4.1	++	
(C	CH2)6	н	1	OCI	H₂O	с	305-308 dec.	$C_{19}H_{28}ClNO_2$	67.5	8.4	4.2	67.6	8.2	4.1	+ + +	+
(0	CH2)5	CH_8	1	H	н	1.5341	284-288 dec.	C19H30C!N	74.1	9.8	4.6	74.1	9.7	4.3	+ +	++
(0	CH ₂)5	CH3	1	H	H	1.53287	284-288 dec.	C19H20ClN	74.1	9.8	4.6	74.ð	9.7	4.7	++	++
	$(\Pi_2)_{\delta}$	C ₂ H ₂	1	н Н	н н	1.5337	284-288 dec. 224-226	к CadHaclN	74 6	10.0	44	74 7	10_1	4.2	++	
((CH ₂)5	CH3	1	OCH3	OCH:	1.0200	245 dec.	C ₂₁ H ₃₄ ClNO ₂	68.6	9.3	3.8	68.5	9.3	3.9	0	
(C	CH2)6	CHa	1	OC.	H ₂ O	c	264-265	$C_{20}H_{30}ClNO_2$	68.3	8.6	4.0	68.1	8.2	3.8	0	
(0	$H_2)_{\delta}$	н	2	н	н	1.5279	259 - 261	$C_{19}H_{30}ClN$	74.1	9.8	4.6	74.6	9.8	4.5	+ .	
(0	CH2)5	CH3	2	H	H	1.5278	198-204	$C_{20}H_{32}ClN$	74.6	10.0	4.4	74.5	9.9	4.3	+++a	
((ンロ2)6 こ日か	н н	3	н н	л ОСН-	1.0261	203-204	CoH2CIN CoH2CINO	74.6 71.7	10.0 0.7	4.4	74.6 71.9	9.8	4.0 3.8	+ + + + + + d	++
C	(CH ₃) H(CH ₂)4	CH3	1	H	H	1.5302	295-297 dec.	$C_{20}H_{32}ClN$	74.6	10.0	4.4	74.8	10.0	4.2	0	
(0	CH ₂)6	Н	1	Н	н	1.5377	299 dec.	C19H30C1N	74.1	9.8	4.6	74.2	9.6	4.3	0	
(0	CH2)6	CH_3	1	н	н	1.5346	319-321 dec.	$\mathrm{C}_{20}\mathrm{H}_{32}\mathrm{ClN}$	74.6	10.0	4.4	74.5	9.9	4 .2	+	

^{*a*} In rabbits; for symbols see Table III, ref. *a.* ^{*b*} K. Kindler, [*Arch. Pharm.*, **265**, 389, 405 (1927)] gives m.p. 233°. ^{*c*} Crude base was not distilled. ^{*d*} Toxic or strong depressant effects at effective dose levels. ^{*e*} Base, m.p. 69–71°. ^{*f*} Base, m.p. 175–180°. ^{*e*} Base, m.p. 66–72°. ^{*h*} Base, m.p. 45–50°. ^{*i*} *dl*-Form. ^{*f*} *l*-Isomer, [*α*]⁴⁵D -16.6° (*c* 2.5, H₂O). ^{*k*} *d*-Isomer, [*α*]²⁰D +14.8° (*c* 2.5, H₂O).

The following general observations can be made about the relationship between activity and chemical structure in 1,4-substituted piperidines (VII): (a) secondary bases, where R_3 is H, are inactive; (b) tertiary bases having 1-alkyl substituents have little or no activity; and (c) good hypotensive activity is associated with the tertiary bases having phenylalkyl substituents on the nitrogen and fairly large alkyl substituents at the 4-position. The activity of one such compound was lost when the phenyl grouping was hydrogenated.

Most of the active compounds investigated have the general structure VIII where R_1 and R_2 are methyl,

TABLE V Piperidine Methiodides

					Caled., %		Found, %				
R_2	R	М.р., ≃С.	Formula	С	11	N	С	H	N		
$n - C_{\delta}H_{11}$	CH2CH=CH2	126-127	C15H3.1N	51.3	8.6	4.0	51.1	8.6	3.7		
$n \cdot C_6 H_{18}$	$CH_2C(C_2H_6)H(CH_2)_3CH_3$	222-223	C21H44IN	57.7	10.1	3.2	58.1	10.0	3.1		
$n - C_6 H_{13}$	n-C8H17	262 - 265	$C_{21}H_{44}IN$	57.7	10.1	3.2	57.6	10.0	3 1		
CH2)5	CH3	283	$C_{12}H_{24}IN$	46.6	7.8	4.5	47.0	7.9	4.2		
CH2)6	C_2H_5	206-208	$C_{13}H_{26}IN$	48.3	8.1	4.3	48.7	7.8	3.9		
CH2)6	$n-C_3H_7$	211-212	$C_{14}H_{28}IN$	49.9	8.4	4.2	49.6	8.3	4.0		
CH ₂)s	i-C ₃ H;	273 dec.	$C_{14}H_{28}IN$	49.9	8.4	4.2	49.6	8.3	4.1		
(H2)6	CH2CH=CH2	180-181	$C_{14}H_{26}IN$	50.2	7.8	4.2	50.4	7.9	3.9		
$CH_2)_{\delta}$	$i-C_4H_9$	226 dec.	C16H30IN	51.3	8.6	4.0	51.3	8.6	3.9		
CH2)5	$i-C_{\delta}H_{11}$	240-241 der.	$C_{16}H_{32}IN$	52.6	8.8	3.8	53.0	8.9	3.3		
CH2)6	$n - C_6 H_{13}$	217-218	$C_{17}H_{34}IN$	53.8	9.0	3.7	53.8	9.0	3.4		
CH2)δ	C6H5	202-203	$C_{17}H_{20}IN$	55 .0	7.1	3.8	55.3	71	3.6		
	$\begin{array}{c} R_2 \\ n - C_6 H_{11} \\ n - C_6 H_{12} \\ n - C_6 H_{12} \\ \end{array}$ $\begin{array}{c} CH_2 \rangle_6 \\ \end{array}$	R1 R $n-C_{\delta}H_{11}$ $CH_2CH=CH_1$ $n-C_{\delta}H_{14}$ $CH_2C(C_2H_6)H(CH_2)_3CH_3$ $n-C_{\delta}H_{13}$ $n-C_{\delta}H_{17}$ $DH_2)_{\delta}$ CH_3 CH_2 CH_3 CH_2 CH_3 $DH_2)_{\delta}$ C_1H_3 $DH_2)_{\delta}$ $n-C_{\delta}H_7$ $CH_3)_{\delta}$ $n-C_{\delta}H_7$ $CH_2)_{\delta}$ $CH_2CH=CH_2$ $CH_2)_{\delta}$ $c+C_{\delta}H_1$ $CH_2)_{\delta}$ $n-C_{\delta}H_{11}$ $CH_2)_{\delta}$ $n-C_{\delta}H_1$ $CH_2)_{\delta}$ $C_{\delta}H_{\delta}$	R1R $M.p., ~C.$ $n-C_{\delta}H_{11}$ $CH_2CH=CH_2$ $126-127$ $n-C_{\delta}H_{13}$ $CH_2C(C_2H_{\delta})H(CH_2)_3CH_3$ $222-223$ $n-C_{\delta}H_{13}$ $n-C_{\delta}H_{17}$ $262-265$ $DH_2)_{\delta}$ CH_3 283 $CH_2)_{\delta}$ C_2H_3 $206-208$ $CH_2)_{\delta}$ $n-C_{\delta}H_7$ $211-212$ $CH_3)_{\delta}$ $n-C_{\delta}H_7$ $211-212$ $CH_2)_{\delta}$ $CH_2CH=CH_2$ $180-181$ $CH_2)_{\delta}$ $i-C_{4}H_3$ 226 dec. $CH_2)_{\delta}$ $i-C_{4}H_{13}$ $240-241$ der. $CH_2)_{\delta}$ $n-C_{\delta}H_{13}$ $217-218$ $CH_2)_{\delta}$ $C_{4}H_{\delta}$ $202-203$	R:RM.p., ${}^{\circ}C.$ Formula $n \cdot C_{6}H_{11}$ $CH_{2}CH=CH_{2}$ $126-127$ $C_{18}H_{28}N$ $n \cdot C_{6}H_{18}$ $CH_{2}C(C_{2}H_{6})H(CH_{2})_{3}CH_{3}$ $222-223$ $C_{21}H_{4}IN$ $n \cdot C_{6}H_{18}$ $CH_{2}C(C_{2}H_{6})H(CH_{2})_{3}CH_{3}$ $222-265$ $C_{21}H_{4}IN$ $DH_{2})_{5}$ CH_{5} 283 $C_{12}H_{3}IN$ $CH_{3})_{5}$ CH_{5} $206-208$ $C_{18}H_{28}IN$ $CH_{3})_{5}$ $n \cdot C_{6}H_{7}$ $211-212$ $C_{16}H_{28}IN$ $CH_{3})_{5}$ $n - C_{6}H_{7}$ $211-212$ $C_{16}H_{28}IN$ $CH_{3})_{5}$ $CH_{2}CH=CH_{2}$ $180-181$ $C_{14}H_{28}IN$ $CH_{3})_{5}$ $i - C_{6}H_{11}$ $240-241$ e_{11} $CH_{3})_{5}$ $i - C_{6}H_{11}$ $240-241$ e_{11} $CH_{3})_{5}$ $n - C_{6}H_{18}$ $217-218$ $C_{11}H_{31}IN$ $CH_{3})_{5}$ $C_{6}H_{5}$ $202-203$ $C_{11}H_{21}IN$	R1R $M.p., ~C.$ Formula $n - C_{3}H_{11}$ $CH_{2}CH=CH_{2}$ $126-127$ $C_{13}H_{23}IN$ 51.3 $n - C_{4}H_{13}$ $CH_{3}C(C_{14}H_{3}) + H_{1}C(H_{2})_{3}CH_{3}$ $222-223$ $C_{11}H_{41}IN$ 57.7 $n - C_{4}H_{13}$ $n - C_{5}H_{11}$ $262-265$ $C_{21}H_{44}IN$ 57.7 $n - C_{4}H_{13}$ $n - C_{5}H_{17}$ $262-265$ $C_{21}H_{42}IN$ 46.6 $CH_{2})_{5}$ CH_{3} 283 $C_{12}H_{25}IN$ 48.3 $CH_{2})_{5}$ $C_{2}H_{5}$ $206-208$ $C_{14}H_{25}IN$ 49.9 $CH_{3})_{5}$ $n - C_{3}H_{7}$ $211-212$ $C_{14}H_{25}IN$ 49.9 $CH_{2})_{5}$ $CH_{2}CH=CH_{2}$ $180-181$ $C_{14}H_{25}IN$ 49.9 $CH_{2})_{5}$ $CH_{2}CH=CH_{2}$ $180-181$ $C_{14}H_{25}IN$ 50.2 $CH_{2})_{5}$ $i - C_{4}H_{1}$ 226 dec. $C_{14}H_{21}IN$ 51.3 $CH_{2})_{5}$ $i - C_{6}H_{11}$ $240-241$ der. $C_{16}H_{21}IN$ 52.6 $CH_{2})_{5}$ $n - C_{6}H_{13}$ $217-218$ $C_{17}H_{31}IN$ 53.8 $CH_{2})_{5}$ $C_{4}H_{5}$ $202-203$ $C_{1}H_{21}IN$ 55.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R:RM.p., *C.FormulaC11NC $n \cdot C_8H_{11}$ CH_2CH==CH2126-127C_{16}H_{26}IN51.38.64.051.1 $n \cdot C_6H_{18}$ CH4C(C_{16}H_6) H(CH2)_3CH3222-223C_{21}H_{44}IN57.710.13.258.1 $n \cdot C_6H_{18}$ CH5CH2262-265C_{21}H_{44}IN57.710.13.257.6CH3CH3283C_{12}H_{24}IN46.67.84.547.0CH3C2H3206-208C_{12}H_{24}IN48.38.14.348.7CH3n - C_6H7211-212C_{14}H_{26}IN49.98.44.249.6CH3i - C_3H7273 dec.C_{14}H_{26}IN49.98.44.249.6CH3i - C_3H7226 dec.C_{14}H_{26}IN50.27.84.250.4CH3i - C_4H3226 dec.C_{16}H_{26}IN51.38.64.051.3CH3i - C_4H1240-241 den.C_{16}H_{21}IN52.68.83.853.0CH3i - C_6H11240-241 den.C_{17}H_{21}IN53.07.13.855.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

TABLE VI

1-Aralkylpiperidine Methiodides

									lad	67	—F-	und	C1	Hypo-
в.	P.	P.	~	р.	р.	Mrs 90	Formula	a	LT	70 T		ина, ъ	70	tensive
	102	163	~	114	п.	inipi, Ci	ronnua	C	11	3	C	п	. `	aetivity
Н	н	н	1	н	н	172-1740				- 0		_		-+-
CH3		н	1	H	H	187191	$C_{17}H_{28}IN$	54.7	7.6	3.8	54.8	7.5	3.3	· [+ ·]+ ·]+
CH3		CH3	1	H	H	195-197	$C_{18}H_{30}IN$	55.8	7.8	3.6	55.6	7.8	3.5	
CH3	n-C3H7	н	1	H	H	197198.5	C13 H801 N	55.8	7.8	3.6	55.8	7.4	3.4	
CH3	n-C3H7	CH3	1	H	н	211-217	$C_{19}H_{32}IN$	56.9	8.0	3.5	56.8	8.0	3.4	
CH₃	i-CaH7	н	1	н	н	215-217	$\mathrm{C}_{18}\mathrm{H}_{80}\mathrm{IN}$	55.8	7.8	3.6	56.0	7.5	3.6	
CH3	$n-C_4H_9$	H	1	н	ы	174175	$\mathrm{C}_{19}\mathrm{H}_{32}\mathrm{IN}$	56.9	8.0	3.5	56.9	8.0	3.3	-+-
CH_3	n-C4H9	CH₃	1	H	н	203206	$C_{20}H_{34}lN$	57.8	8.3	3.4	57.3	8.2	3.2	
CH_3	n-C ₄ H ₉	н	1	н	OCH₃	179-188	$C_{20}H_{34}INO$	55.7	7.9	3.3	55.9	7.8	3.1	
CH_3	n-C4H9	н	1	OCH3	OCH_3	204-207	$C_{21}H_{36}INO_{2}$	ð4.7	7.9	3.0	54.7	7.8	3.1	0
CH₃	n-C ₄ H ₈	н	1	OCH_3	OC_2H_{δ}	165 - 174	$C_{22}H_{38}INO_2$	55.6	8.1	3.0	55.9	8.1	2.9	
CH_3	$n-C_4H_9$	Н	1	OC₂Hs	OC₂H₅	226-227.5	$C_{23}H_{40}1NO_2$	56.4	8.2	2.9	56.5	8.2	2.6	
CH3	n-C4H9	Н	3	Ħ	н	198-202.5	C21 H36 I N	58.7	8.5	3.3	59.0	8.6	3.0	
CH_3	$n-C_{\delta}H_{11}$	H	1	н	н	177-178	$C_{20}H_{34}IN$	57.8	8.3	3.4	58.2	8.4	3.4	+++
CH_3	$n - C_{\delta} H_{11}$	\mathbf{H}	1	OCH_8	OCH ₃	203-205	$C_{22}H_{38}INO_2$	55.6	8.1	2.9	55.9	8.3	2.5	
CH_3	n-C6H11	CH3	1	н	\mathbf{H}	208-211	$C_{21}H_{36}IN$	58.7	8.5	3.3	58.5	8.2	3.5	
CH3	n-C6H13	H	1	н	н	214 - 215	C21 H36IN	58.7	8.5	3.3	58.3	8.4	3.2	-+-
CH_3	$n - C_6 H_{13}$	CH_{3}	1	н	н	211-215.3	C22HasIN	59.6	8.6	3.2	59.7	8.7	3.1	
CH3	$n-C_6H_{13}$	C_2H_5	1	н	н	193-202	C 23 H40 I N	60.4	8.8	3.1	60.8	8.9	3.0	
CH3	n-C6H13	Н	1	Ħ	OCH ₂	195-196	CoHaINO	57 5	8.3	3.1	57.8	8.3	2.9	
CHa	n-C6H13	н	ī	OC+HA	OC ₂ H ₅	230 dec.	Cas Haal NOv	58.0	8.6	27	57 7	8.6	2 5	
CH ₃	n-CeH13	H	1	00	11-0	202	CasHaiNOs	55.8	7.7	3.0	55 5	7.5	2.9	
CH	n-CeH13	н	2	н	H	181-184	ConHain	59.6	8.6	3.2	59.7	8 7	3.0	
CH.	n-CeH12	н	3	н	н	917-918 5	ConHoiN	60.4	8.8	3.1	60.2	8.7	9.0	
CH.	n-CeHa	11	2	1.1	OCH.	213 5-914	C.H.INO	50.1	9.7	20	50 I	9.7	9.7	
CH	4-CoH10	11	1	11	UC 113	196-197 5	C. H. IN	59.1	8.5	2.8	59.4 59.5	8.1		
CH	n-C-H.	ч	1	л ц	11	100-107)	C. H. IN	50.1	0.0	29	50.0	9.7. 9.6	9.0 9.11	
CH	n-C/III8	CH	1	11	11	912 916	Collissin	60.4	0.0	21	80 3	8.0	2.0	
CH	n-Cillis	ы ы	,	11	11	213~210	C2311401 N	61.5	0.0	2.0	61 4	8.0	2.1	
CII3	n-C 91119	11	1	11	11	200-206	C 11 1 N	50.0	9.0	0.0	CO O	0.9	0.1 9 A	1
Chi		CH	1		11	200	$C_{21}\Pi_{281}N$	09.9	5.0	0.0	40.0	7.0	0.0	τ 0
		UT S	1	11	11	230 095d	C-2211851 N	50.7	1.0	0.2 5.0	50.9	6.1	-0-2- -1-1-	0
C D-			1	11	11	2007	C 11 IN		8.0	0.0		8.0	0.1	4.4.
- C2E18 	$OH_{3}OH(OH_{3})O_{2}H_{3}$	U F13	1	11	11	254-255	C 22 F1381 N		8.0	a.∠ o.e		8.0 - 0	¥.a	1.1
(C.H (C.H	2/4	п Сп	1	F1	11	210	C18 H281 N		1.0	0.0	00.0	1.2	0.0	4. 14.
(C H	2)4	112	1	11	11	221	C19 H1301 IN	- 04.1 #C 1	7.0	0.0 0.0	50.8		0.0	0
(CH	2/5		0	11	11	241 dec.	CISH281 N	50.1	1.0	0.0	00.0 	7.9	0.0 0.0	0
(CH	2)5		0	11	11	180 dec.	CieH301N	57.1	1.0	3.0	57.0	7.9	5.2	
(CH (CH	2/8	$C_2 F_{15}$	Ů,	H	11	182.5-184	C20 H321 N	58.2	1.8	3.4	58.0	1.8	3.2	
	2)5	n orr	1	H	11	220	C19H301N	01.1	1.0	3.0	0.06	7.0	-0.4 -0.0	,
(CH	2)5	CH3	1	11	H	225-226	C20H321N		7.8	3.4	57.5	1.1	2.9	+
(CH	2)6	н	1	н	OCH3	213-223	C20H32INO	56.0	7.5	3.3	55.6	1.4	3.5	
(CH	2)5	H	1	00	CH2O	230	C20H301NO2	54.2	6.8	3.2	54.0	6.8	2.7	
(CH	2)5	H	1	OCH ₃	OCH ₈	235-236	$C_{21}H_{34}INO_2$	54.4	7.5	3.1	54.8	1.4	3.0	
(CH	2/6	H)	OCH ₃	OC2Hs	212-213	C22H361NO2	55.8	7.7	3.0	55.6	7.6	2.9	
(CH	2)5	H	2	H	1H	180~182	C ₂₀ H ₃₂ 1N	58.1	7.8	3.4	58.1	7.8	3.1	+
(CH	2)5	CH₃	2	Н	H	167. 5-168 .5	$C_{21}H_{34}IN$	59.0	8.0	3.3	59.2	7.9	3.2	
(CH	2)6	H	3	H	H	180-190.5	C ₂₁ H ₃₄ IN	59.0	8.0	3.3	59.1	8.0	3.2	+++
(CH	2)6	Н	3	11	OCH:	182-185.5	$C_{22}H_{36}INO$	57.8	7.9	3.1	57.8	8.0	28	
(CH	2)6	H	1	н	11	213.5 - 214.5	$C_{20}H_{32}IN$	58.1	7.8	3.4	58.5	7.8	3.5	
(CH	2)8	CH_3	1	11	H	234 - 235	$C_{21}H_{34}lN$	59.0	8.0	3.3	58.7	8.1	3.2	

^a In rabbits, i.p.; for symbols see Table III, ref. 3. ^b C. T. Bahner, M. Fielden, L. Rives, and M. Pickens, J. Am. Chem. Soc., 73, 4455 (1951). ^c + + activity orally in rabbits. ^d Softens from 207°.

788

n-hexyl, or 4-spirocyclohexane; R_3 is H or methyl; and R_4 and R_5 are H or alkoxy.

Many anomalous observations were made regarding the phenyl substituents R_4 and R_5 . For example, introduction of a methylenedioxy group into 1-phenethyl-4-spirocyclohexanepiperidine $(R_3 = H)$ at R_4 and R_5 increased activity markedly, but the same structural modification in the otherwise identical compound having $R_3 = CH_3$ resulted in slight hypertensive activity. Again, the activity of the former compound is abolished by introduction of OCH₃ groupings at R₄ and R₅, but the two compounds having, respectively, OCH₃ and OC₂H₅, or H and OCH₃ at R_4 and R_5 have activities similar to that of the parent compound. Similar anomalies were found among compounds having methyl n-hexyl substituents at the 4-position (Table IV). There is no apparent relation between activity and structure as far as substitution of the phenyl group is concerned.

Although all active compounds have fairly bulky 4-substituents, generally methyl and n-hexyl or spirocyclohexane, the limit is reached with methyl and nnonyl, the compound 1-phenethyl-4-methyl-4-n-nonylpiperidine being inactive. High activity was, however, found when the desirable 4-substituents were retained and the phenylalkyl chain was lengthened. Thus 1-(1-methyl-3-phenylpropyl)-4-methyl-4-n-hexylpiperidine and 1-(4-phenylbutyl)-4-spirocyclohexanepiperidine are hypotensive when administered intraperitoneally or orally to the rabbit.

The d- and l-isomers of one active dl-compound were found to have activity identical with that of the *dl*compound (Table IV). All other compounds having asymmetric centers were synthesized and screened as the dl-forms.

The suggestion⁸ that the N-oxide derivative of a pharmacologically active base may retain activity of the base with reduced toxic side effects was investigated in one instance. The N-oxide of 1-phenethyl-4spirocyclohexane was found to be without hypotensive activity.

Experimental

Microanalyses were carried out by the University of Melbourne and C. S. I. R. O. Microanalytical Laboratory. Melting points were determined on a gas-heated Electrothermal apparatus and are uncorrected.

The following phenylalkylamine intermediates were either commercially available or were prepared by methods reported in the literature: benzylamine, 1-phenylethylamine, 1-phenylpropylamine, phenethylamine, 1-phenyl-2-propylamine (dl, d-, and l-), 1-benzylpropylamine, 3,4-dimethoxyphenethylamine, 3,4,5-trimethoxyphenethylamine, 1-(3,4-dimethoxyphenyl)-2propylamine, 3,4-methylenedioxyphenethylamine, 1-(3,4-methylenedioxyphenyl)-2-propylamine, 1-phenyl-3-butylamine, and 4-phenylbutylamine.

p-Methoxyphenethylamine, 3-methoxy-4-ethoxyphenethylamine, and 3,4-diethoxyphenethylamine, previously reported in the literature, were synthesized by lithium aluminum hydride re-

(8) C. C. Culvenor, Rev. Pure Appl. Chem., 3, 83 (1953).

duction of the corresponding β -nitrostyrenes, which were prepared according to the method of Gairaud and Lappin.⁹ 4-(p-Methoxyphenyl)butylamine, obtained by lithium aluminum hydride reduction of γ -(*p*-methoxyphenyl)butyramide, has b.p. 146° (3 mm.), n²⁰D 1.5208.

All phenylalkylamines having an asymmetric center, and the compounds derived from them, were prepared as the *dl*-forms unless otherwise stated.

The following examples are typical of the methods used for preparation of the compounds tabulated.

N-Phenethyl-\$-spirocyclohexaneglutarimide.--\$-Spirocyclohexaneglutaric anhydride (18.2 g., 0.1 mole) and phenethylamine (12.5 g., 0.103 mole) were mixed, and the mixture was heated at 190-210° for 3 hr. when evolution of water vapor ceased. The mix was cooled and macerated with water when the dark mass readily crystallized. The product was obtained as large colorless needles, m.p. 81-82° after two recrystallizations from petroleum ether (b.p. 55-95°), 21.5 g., 75% yield.

1-Phenethyl-4-spirocyclohexanepiperidine Hydrochloride.-An ethereal solution of the above glutarimide (14.3 g., 0.05 mole) was added with stirring over 15 min. to a slurry of lithium aluminum hydride (4.5 g., 0.13 mole) in 250 ml. of dry ether. The mixture was refluxed for 1 hr. and the complex then was decomposed by addition of moist ether and finally water. After filtration, the residue was washed thoroughly with ether and the solution was dried (Na_2SO_4). The solvent was removed and the residue was distilled to give 1-phenethyl-4-spirocyclohexanepiperidine as a colorless liquid, b.p. 174-176° (0.5 mm.) (11.0 g., 86% yield). The hydrochloride salt was prepared by treatment of an ethereal solution of the base with dry HCl. Recrystallization from ethanol-ether gave colorless needles, m.p. $300^{\circ} dec$

N-(1-Phenyl-2-propyl)-\beta-methyl-\beta-n-hexylglutarimide.β-Methyl-β-n-hexylglutaric anhydride (31.8 g., 0.15 mole) and 1-phenyl-2-propylamine (20.6 g., 0.153 mole) were mixed and heated together over a free flame to an internal temperature of 350°, maintaining this temperature for 15-20 min. when evolution of water vapor ceased. Distillation gave the product as a viscous liquid, b.p. $205-209^{\circ}$ (5.0 mm.), 37.0 g., 75% yield.

 $1\hdots (3,4\hdots Dimethoxy phenethyl)\hdots 4\hdots pirocyclohexane piperidine$ Methiodide .- The free base (4.0 g.), obtained by hydride reduction of the corresponding glutarimide, was allowed to react with methyl iodide (4 ml.) in ethereal solution at room temperature. After several days the precipitate was filtered, washed with ether, and recrystallized from alcohol-ether to give pale yellow flakes, m.p. $235-236^{\circ}$, 85% yield.

dl-1-(1-Methyl-2-cyclohexylethyl)-4-spirocyclohexanepi-peridine. -1 - (1 - Phenyl - 2 - propyl) - 4 - spirocyclohexanepiperidine(5.4 g., 0.02 mole) was hydrogenated in acetic acid solution (100 ml.) using Adams' PtO_2 catalyst (0.2 g.) in a Parr low-pressure hydrogenator. Reduction began at 80° and was complete in 2 hr. After removal of catalyst, the solution was evaporated, the residue was made alkaline and extracted with ether. Treatment with HCl gave the hydrochloride salt which, after recrystallization from water containing a trace of HCl, was obtained as a colorless powder, m.p. 230-245°, 4.2 g., 67% yield. Anal. Calcd. for C₁₉H₃₆ClN: C, 72.7; H, 11.6; N, 4.5.

Found: C, 73.1; H, 11.3; N, 4.3.

dl-(1-phenyl-2-propyl)-4-spirocyclohexanepiperidine N-Oxide.—The free base (5.4 g., 0.02 mole) was converted quantitatively to the crystalline N-oxide by mixing with 100 vol. of hydrogen peroxide (10 ml.) and 20 ml. of water. The N-oxide separated after a few minutes at room temperature. After air drying, the colorless product (5.7 g.) had m.p. 95-100° (with gas evolution above this temperature).

Anal. Caled. for C19H29NO: C, 79.3; H, 10.2; N, 4.9. Found: C, 79.9; H, 10.3; N, 5.0.

The compound decomposed slowly to the piperidine base on storage at room temperature for several months.

Acknowledgment.—We are grateful to Mr. M. I. Murray for technical assistance, to Mr. R. G. Curtis for useful discussions, and to Dr. G. A. Bentley and Miss P. A. Tasker for permission to include the preliminary account of their pharmacological data on these compounds.

(9) C. B. Gairand and G. R. Lappin, J. Org. Chem., 18, 1 (1953),